集寧PVP
正是由于直接脫水法需要較高的溫度(350~400℃),加之如前所述,難以找到.工業(yè)化生產(chǎn)理想的脫水催化劑,所以有人提出了間接脫水法合成NVP的路線.間接脫水法是使NHP分子內(nèi)的羥基先被另一基團所取代生成一種中間產(chǎn)物,然后由這個中間產(chǎn)物發(fā)生反應生成NVP.
另據(jù)美國ISP公司提供的資料,其PVP-K堆密度為0.3g/ml左右,與BASF公司的同類產(chǎn)品堆密度有較大差別,可見,干燥工藝不同,對PVP產(chǎn)品堆密度影響較大.另外,測定方法不同也會導致PVP堆密度數(shù)據(jù)的差異.不溶性或者交聯(lián)PVP的堆密度一般在0.28~0.38g/ml.至于NVP的聚合研究,由于其聚合物具有的優(yōu)異性能,而且相關的應用領域多是與聚合物直接相關的,所以NVP的聚合更是受到廣大科技工作者的關注.
J.Ferguson等人對NVP在酸和鹽存在下的水解進行了比較的研究,得到了NVP水解速率與時間的關系曲線.顆粒大小對PVP堆密度有直接的影響,顆粒越大,顆粒間空隙越大,一定質(zhì)量的PVP堆體積就越大,由式(2.4)容易看出,顆粒越大,導致PVP堆密度越小.PVP作為一種合成水溶性高分子化合物,具有水溶性高分子化合物的一般性質(zhì),如膠體保護作用、成膜性、黏接性、吸濕性、增溶性、凝聚作用以及與某些化合物的絡合能力等.
顯然,取代NHP分子內(nèi)經(jīng)基的基團必須滿足---定的條件,即既容易取代NHP分子內(nèi)的羥基,又要能比較容易地從中間產(chǎn)物分子中脫去.這樣,不經(jīng)過NHP的直接催化脫水,而是通過另外一種中間產(chǎn)物在較溫和的條件下同樣達到由NHP分子脫水生成產(chǎn)物NVP的目的,同時達到較高的產(chǎn)物收率,所以被稱為間接脫水法.間接脫水法根據(jù)取代NHP分子內(nèi)羥基基團的不同,又可分為鹵代法、乙酐法等.鹵代法是間接脫水法中被研究較好的主要方法,其方法要點是:用--種鹵代劑與NHP反應生成鹵代乙基吡咯烷酮,然后由鹵代乙基吡咯烷酮的熱反應得到產(chǎn)物NVP.
集寧PVP
到目前為止,PVP已發(fā)展成為均聚物、共聚物、交聯(lián)聚合物三大類,近年來,離子型的PVP也得到了相應的發(fā)展并越來越受到人們的重視.PVP商品也發(fā)展到工業(yè)級、醫(yī)藥級、食品級三種規(guī)格,數(shù)十個品種和成百上千個牌號.PVP由于其優(yōu)異的性能而被廣泛地應用于工農(nóng)業(yè)生產(chǎn)和人民生活以及相關的科研部門.現(xiàn)在,有關PVP及其單體NVP的研究和應用的文獻以每年幾百篇的速度在進一步發(fā)展。
其他方面,如建材、冶金﹑煉鋼、電鍍等領域的應用研究也已開展,可以說,PVP已滲透到國民經(jīng)濟及人們生活的各個領域.PVP及其單體NVP早是由BASF公司J.Walter.Reppe以乙炔為主要原料合成的,該法稱為Reppe法,又叫乙炔法.20世紀50年代,美國的ISP公司,當時的GAF公司與德國的BASF公司相繼以乙炔法為基礎建立了NVP生產(chǎn)線,進而生產(chǎn)出了各種牌號的PVP產(chǎn)品,迄今為止,這兩家公司仍然是生產(chǎn)PVP產(chǎn)品的主要廠家。
NVP分子內(nèi)的乙烯基電荷不平衡,即雙鍵相連的兩個碳原子上電荷密度不一樣.這種電荷不平衡為NVP的水解提供了可能性,當在酸性或有堿金屬離子存在時,NVP分子內(nèi)就發(fā)生異構(gòu)化,形成--系列過渡態(tài),終生成吡咯烷酮與乙醛,這是NVP水解的一步.NVP水解的二步為一步生成的吡咯烷酮與NVP分子進行加成反應,然后在水的參與下進-步分解為吡咯烷酮和乙醛.
在鹵代法中, 重要的是鹵代劑的選擇,不少研究工作證明,氯化亞飆(SOC1,)可作為鹵代劑129},用SOCI。先是羥乙基吡咯烷酮在溶劑苯中與SOCl,發(fā)生鹵代反應生成氯乙基吡咯烷酮,然后用KOH或甲醇鈉作催化劑脫去一分子氯化氫生成NVP,反應的實施過程如下:( 1 )NHP和苯按重量比1:0.5~0.8加人三頸燒瓶中,再把燒瓶置于加有冰塊的超級恒水浴中,邊攪拌,邊由滴液漏斗滴加入重量為NHPO.83倍的SOCl ,控制速度使體系溫度不大于35℃為宜(因為羥乙基吡咯烷酮與SOCl之間的反應為強放熱反應),滴加完畢后繼續(xù)攪拌4h,此時NHP的轉(zhuǎn)化率已達90%以上,將反應裝置接到SO。
集寧PVP該反應的反應速率除受催化劑本身活性大小和宏觀物性的影響外,還受傳質(zhì)傳熱等因素的影響.氣液兩相反應時,原料丁炔二醇的濃度對反應轉(zhuǎn)化率的影響的,在固定氫氣壓力和流速的情況下,丁炔二醇濃度較低,可以得到較高的轉(zhuǎn)化率,但是設備利用率,而且會造成原料H的大量浪費,尤其是前一種情況,在工業(yè)化設計時是必須要考慮的因素.如果選擇高濃度的丁炔二醇溶液,轉(zhuǎn)化率,而要得到高的轉(zhuǎn)化率,就要延長通H的時間和增加通H,的循環(huán)次數(shù).更重要的一點是,從式(3.17)可以看出,丁炔二醇催化加氫是-個強放熱反應.顯而易見,丁炔二醇的濃度越大,體系放出的熱量就越多,以至于不易排出,造成操作上的不便.